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1. INTRODUCTION

There is a growing trend to employ CFD tools to supply the necessary information for design

optimization of fluid dynamics components/systems. Such results are prone to uncertainties due to

reasons including discretization errors, incomplete convergence of computational procedures, and

errors associated with physical models such as turbulence closures. Based on this type of

information, gradient-based optimization algorithms often suffer from the noisy calculations,

which can seriously compromise the outcome. Similar problems arise from the experimental

measurements.

Global optimization techniques, such as those based on the response surface (RS) concept are

becoming popular in part because they can overcome some of these barriers. However, there are

also fundamental issues related to such global optimization technique such as RS. For example, in

high dimensional design spaces, typically only a small number of function evaluations are

available due to computational and experimental costs. On the other hand, complex features of the

design variables do not allow one to model the global characteristics of the design space with

simple quadratic polynomials. Consequently a main challenge is to reduce the size of the region

where we fit the RS, or make it more accurate in the regions where the optimum is likely to reside.

Response Surface techniques using either polynomials or and Neural Network (NN) methods offer

designers alternatives to conduct design optimization. The RS technique employs statistical and

numerical techniques to establish the relationship between design variables and

objective/constraint functions, typically using polynomials. The NN technique employs many

simple linear and non-linear elements operating in parallel and connected in patterns to represent



suchrelationshipbetweendesignvariablesandobjective/constraint functions. The polynomial and

NN techniques can be used either independently or in combination. Depending on the

characteristics of the design variables, polynomials and NN can exhibit different accuracies in

different regions of design space. Hence, a main interest of the present effort is to identify ways to

combine polynomial and NN techniques to enhance the performance of the overall RS model.

In this study, we aim at addressing issues related to the following questions: (1) How to

identify outliers associated with a given RS representation and improve the RS model via

appropriate treatments? (2) How to focus on selected design data so that RS can give better

performance in regions critical to design optimization? (3) How to combine NN and polynomial

techniques for improving the accuracy of the RS model?

2. MAIN APPROACH AND SCOPE

The physical example chosen in the present study is the supersonic turbine envisioned for the

next generation reusable launch vehicle (RLV). There are growing interests to consider this

technology for space transport. Based on our previous work [1-3], a two-stage configuration has

been optimized at the preliminary design level. The focus here is to optimize the shape of the stator

(vane) and runner (blade) in each stage. Navier-Stokes-based CFD solutions are used as the sole

input data. For the first stage vane, there are 7 design variables, while for the first and second stage

blade and second stage vane, there are 11 design variables. In all cases, the goal is to maximize the

stage total-to-total efficiency (rl).

2.1. Outlier and Bias Error Analysis

We intend to identify the data points that are "statistically" out of the range for the response

surface (RS) model under consideration and characterize them as outliers. Outliers are defined as

infrequent observations that do not appear to follow the characteristic distribution of the rest of the

data and they may have a strong influence on the least squares estimate. Statistical analysis can be

utilized to detect such flaws.

2



• Outlier Analysis based on Iteratively Re-weighted Least Square (IRLS) procedure will

be adopted for detection of the outliers [4, 5]. We hope that detecting outliers will help us to offer

more insight into following problems

• A better understanding of the scatter of the data generated directly by CFD.

• The effect of the outliers on the calculation of statistics and degree of fidelity of the

response surface model. The number of outliers can indicate the degree of fidelity of the

RS.

• How to interpret and handle such design points for the given application problem.

Excluding all outliers might not be the best solution especially if the nature of the outlier

design is not clear.

Statistical tools and associated assumptions may also introduce additional uncertainty.

Therefore, we are going to use an alternative approach called as Mean Square Error-Based

Approach together with an Outlier Analysis while searching for the ways of defining uncertainties

associated with the generated response surface model.

• A Mean Square Error-Based Approach addressing the approximation errors due to

model inadequacy will be applied [6]. The approach seeks to determine locations in the design

space where the accuracy of the approximation appears poor. This approach can help to assess the

certainty of predicted optimal designs.

2.2. Selective Emphasis Of Critical Input Data

Since we are most interested in identifying highest efficiency points, using the outlier

analysis and mean square error approach, we can place higher emphasis on data belonging to such

a region [4, 7] to improve the model performance in critical areas and/or identify needs for further



input data.For example,we canassignhigher weightingsfor datawith higherefficiency values

whenapplyingthe IRIS approach.Also, the level of scatterfor trainingandtestingpointscloseto

designgoalcanbecalculatedto illustratetheexpecteduncertaintyof theRSprediction.

2.3. NN-Enhanced RS Model

In our previous research, it is demonstrated that to use the information obtained by using

outlier analysis and mean square error approach to select the design points to be generated

additionally using neural networks. This approach is often applied to supply additional

information for the polynomial response surface by using Neural Network (NN) trained by the

original CFD data. This can be used to improve the accuracy of the RS, and to allow the

optimization task to be conducted with smaller number of CFD runs. Ultimately, we want to see

how to use effectively neural networks and different level of response surface to maximize the

performance of the optimization tool. However, there are few critical issues that need to be

focused on when creating such NN-Enhanced design space.

• The distribution of the data to be added using NN's, for example, should be selected

systematically. It can either be chosen in such a way that it fills-out the "holes" of unrealistic or

difficult cases for which CFD tools may not be suitable, or it can follow one of the DOE

techniques that is going to enrich the original design space in a more systematic way.

• The ratio of the number of original data (CFD) and enhanced data (NN) can have an

effect on response surface efficiency. For example, if the number of enhanced data generated by

NN is much larger than the original CFD data, this might overwhelm the characteristics of the

problem.

3. PRELIMINARY RESULTS

We have considered the first vane shape design optimization of a supersonic turbine as an

application problem. For this case, there are 7 design parameters and the objective function is the
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stagetotal-to-total efficiency (11).For this case,CFD information is availableat only 245-design

pointsthat arereducedfrom facecenteredcompositedesignsin (-1, +1) for all designvariables.

Among these245-data,219 of them are usedfor fitting and the remaining26-datais used for

testingtheapproximationaccuracythatweconstructed.Therangefor thetestsetis -0.5 to 0.25.

We have studied3 quadraticapproximationmodels:(1) RS without outliers treatment,(2)

StandardIRLS, and(3) IRLS customizedby higherweight assignmentto datain high-efficiency

designregions(We definea high-efficiencydesignif T__>0.75).The main differencebetweenthe

last two modelsis theweight distributionusedfor IRLS. In standardIRLS procedure,theweight

distribution given below is used and 2ndmodel assignsthe weights accordingto this formula.

However,for the customizedmodel, weightsare forced to be not lower than0.8 for designsof

11_>0.75region.

w = - if e/a a <_B (1)

otherwise

The statistical summaries of these models are shown in Table 1. Figure 1 illustrates the

performance of the original RS and IRLS models along with the outliers, based on CFD-data.

Together with Table 1, it shows that by treating the outliers, better models can be constructed.

Since we are ultimately interested in determining an optimal design, it is instructive to check the

range of scatter as marked on Figure 1 (b) and (c) associated with the original CFD data. Table 2

compares the number of outliers contained in either approach. Standard IRLS detects 17 outliers

with 7 existing in the higher efficiency region. Customized IRLS, however, finds 15 outliers with

all existing in the lower efficiency region as expected. Figure 2 shows results from mean squared

error criterion based approach for the quadratic RS approximation. The approach presents a point-

wise measure (eigenvalues) characterizing possible bias error assuming a cubic model as the true

function. Positive correlation between the eigenvalues and the magnitude of bias error is expected



in casethe fitting model is inadequate. We use absoluteerror betweenthe CFD dataand the

quadraticRS predictionsfor the evaluation. We also checkedthe correlationsbetweenthe

efficiencyandthe eigenvalues/errorin orderto investigatethe modelingerrordistribution in high

and low efficiency design regionsand reportedin Table 3. Negativecorrelation betweenthe

efficiency and the errors is an indication that the quadraticRS is predicting better for high-

efficiencyregionalthoughall datapointshavesameweight=l.
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Table 1.StatisticalSummariesof differentquadraticmodelsconstructedfor thefirst vane

RS for CFD Data Standard IRLS Customized IRLS

iRSquare 0.879 0.951 0.937

RSquare Adj 0.856 0.941 0.924

Root Mean Square (rms) Error 0.007 0.004 0.004

%rms-Error 0.874% 0.490% 0.536%

Mean of Response 0.747 0.749 0.750

Observations (or Sum Wgts) 219 202 204

Testing rms-Error 0.003 0.003 0.001

% Testing rms-Error 0.437% 0.418% 0.174%

Table 2. Outliers Summary for different quadratic models for the first vane
Number of Outliers Number of Total Number Total Number

in CFD Data Outliers in r1<0.75 of Outliers of Data

RS for CFD Data 17 10 17 219

Standard IRLS based - 202

on CFD data

Customized IRLS based 15 15 15 204

on CFD data

Table 3. Coefficient of correlation summary for the first vane

Eigenvalues
IErrorl

% IErrorl

Efficiency

EigenvalueslErrorl % IErrorl
1.000 0.227 0.231

1.000 0.999

1.000

Efficiency
-0.465

-0.451

-0.476

1.000
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